Quiz \#13

The Taylor series expansion for a^{x} is:

$$
a^{x}=\sum_{n=0}^{\infty} \frac{\ln (a)^{n}}{n!} x^{n}
$$

Write a script that determines a^{x} using the Taylor series expansion. The user should enter values for a and x. Use a while loop to add the terms of the Taylor series. If c_{n} is the $n t h$ term in the series, then error can be calculated as $E=\left|\frac{c_{n}}{S_{n-1}}\right| . S_{n-1}$ is the sum of all the previous n-1 terms. You should stop adding terms when $\mathrm{E}<0.000001$. You should get the following when running the code:

Enter the value a: 2
Enter the value x: 3.5
After 15 terms, the sum $=11.313708$

Recall that this Taylor series is an approximation to a^{x}. For this example then, 11.313708 is the approximate value of $2^{3.5}$.

